
TEORÍA DE REDES DE TELECOMUNICACIONES

Grado en Ingeniería Telemática

Grado en Ingeniería en Sistemas de Telecomunicación

Curso 2015-2016

Lab work #3. Introduction to Net2Plan
algorithms development (II)

(1 session)

Author:

Pablo Pavón Mariño

1 Objectives

The goals of this lab work are:

1. Introduce the development of more complex Net2Plan o�ine design algorithms, getting more
familiar with the Javadoc documentation.

2 Duration

This lab work is designed for one session of two hours.

3 Evaluation

This lab work has been designed to guide the students in their learning of Net2Plan. The annotations
the students make in this document are for their use when studying the course, and do not have to be
delivered to the teacher for evaluation.

4 Documentation

The resources needed for this lab work are:

• Net2Plan tool and their documentation (see http://www.net2plan.com/).

• Instructions in this wording.

5 Previous work before coming to the lab

• Make the quizs left un�nished from the previous lab session.

6 Shortest-path routing and capacity allocation

Important: Before starting this lab work, the student should open in separate browsers the docu-
mentation that will need along the session:

• Net2Plan users guide.

• Net2Plan Javadoc documentation.

• Standard Java Javadoc documentation.

Open Eclipse and create a new project to host the new algorithm to develop. Copy the template
�le AlgorithmTemplate.java and rename it as LabSession3_cfa.java. The student should modify
this �le, to implement an algorithm with the following characteristics:

1

• The algorithm has a single input parameter called cg, with default value equal to cg = 0.6. It is
the utilization that will be enforced in all the links.

• The algorithm receives an input design which is supposed to have nodes, links and tra�c demands
(unicast). With this design the algorithm should:

� Set the routing type as source-routing.

Use the setRoutingType method of the NetPlan object (see the Javadoc!!!).

� Remove any input route or protection segment.

Use the removeAllRoutes and removeAllProtectionSegments methods of the
NetPlan object (see the Javadoc!!!).

� For each demand, the tra�c should be carried using a single Route, where the link capacity
occupied by the route is the same as the tra�c carried, and the route path is the shortest
path in number of hops (number of traversed links) between the demand end nodes.

For computing the sequence of Link objects that corresponds to the shortest
path between two nodes, use the getShortestPath method in the GraphUtils class
of package com.net2plan.libraries (see the Javadoc!!!).

� After previous point in completed, the network links are carrying the routed tra�c. Now,
for each link, set its capacity so that its utilization becomes equal to the input parameter
cg. This means that the capacity ue of a link e should be made equal to ue = ye/cg, where
ye is the link capacity currently occupied by the carried tra�c.

To see the occupied capacity by the tra�c in a particular link, use the
method getOccupiedCapacityIncludingProtectionSegments in the Link object (see
the Javadoc!!!).

To set the capacity of a link, use the method setCapacity of the Link object
(see the Javadoc!!!).

• The output message of the algorithm should include the total amount of capacity installed in the
links (that is, the sum of the link capacities).

6.1 Checking the algorithm

The student can check its implementation by loading the network NSFNet_N14_E42_complete.n2p,
and then running the algorithm in it with the default input parameter cg=0.6 :

• The resulting total link capacity should be 13866.090 (see the Layer statistics for this).

• All the links should have an utilization equal to 0.6.

• The design should have no protection segment.

7 Now on your own

The target of these exercises is letting the student get familiar with the Javadoc documentation, and
the most typically used methods in the classes NetPlan, Node, Link, Demand, etc.

Quiz 1. Create an algorithm that removes all the existing demands in the network, and then creates
one demand between each node pair, with a constant o�ered tra�c traf, an input parameter of the
algorithm with default value 1.

2

Quiz 2. Create an algorithm that removes all the existing routes in the network. Then, it goes
through all the tra�c demands of the design, in increasing order of index (0,1,2,...). For each demand,
the algorithm should use the method getCapacitatedShortestPath in GraphUtils class, to compute the
shortest path between the demand end nodes, that has a su�cient unused capacity in the links

to carry the tra�c of the new demand. If no path is returned, the demand is blocked. If a path
is found, we route all the demand tra�c through it. As usual, the link occupied capacity is equal to
the link carried tra�c. Hints:

• For iterating through the demands you can use any of the two following options:

1 f o r (i n t indexD = 0 ; indexD < netPlan . getNumberOfDemands () ;
indexD ++)

2 {
3 Demand d = netPlan . getDemand (indexD) ;
4 . . .
5 }

or

1 f o r (Demand d : netPlan . getDemands ())

Since the latter iterates the demands also in increasing order of indexes, starting from 0.

• To see the occupied capacity by the tra�c in a particular link, use the method getOccupiedCa-

pacityIncludingProtectionSegments in the Link object (see the Javadoc!!!).

8 Work at home after the lab work

The student is encouraged to complete all the Quizs that he/she could not �nish during the lab session.

3

